Parametric Ordinal Logistic Regression and Non-Parametric Decision Tree Approaches for Assessing the Impact of Weather Conditions on Driver Speed Selection Using Naturalistic Driving Data

Author:

Ghasemzadeh Ali1,Hammit Britton E.12,Ahmed Mohamed M.1,Young Rhonda Kae3

Affiliation:

1. Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY

2. FHWA Turner Fairbank Highway Research Center, McLean, VA

3. Department of Civil Engineering, Gonzaga University, Spokane, WA

Abstract

The impact of adverse weather conditions on transportation operation and safety is the focus of many studies; however, comprehensive research detailing the differences in driving behavior and performance during adverse conditions is limited. Many previous studies utilized aggregate traffic and weather data (e.g., average speed, headway, and global weather information) to formulate conclusions about the impact of weather on network operation and safety; however, research into specific factors associated with driver performance and behavior are notably absent. A novel approach, presented in this paper, fills this gap by considering disaggregate trajectory-level data available through the SHRP2 Naturalistic Driving Study and Roadway Information Database. Parametric ordinal logistic regression and non-parametric classification tree modeling were utilized to better understand speed selection behavior in adverse weather conditions. The results indicate that the most important factors impacting driver speed selection are weather conditions, traffic conditions, and the posted speed limit. Moreover, it was found that drivers are more likely to significantly reduce their speed in snowy weather conditions, as compared with other adverse weather conditions (such as rain and fog). The purpose of this study was to gather insights into driver speed preferences in different weather conditions, such that efficient logic can be introduced for a realistic variable speed limit system—aimed at maximizing speed compliance and reducing speed variations. This study provides valuable information related to drivers’ interaction with real-time changes in roadway and weather conditions, leading to a better understanding of the effectiveness of operational countermeasures.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3