Estimation of Average Annual Daily Bicycle Counts using Crowdsourced Strava Data

Author:

Dadashova Bahar1,Griffin Greg P.2,Das Subasish1,Turner Shawn1,Sherman Bonnie3

Affiliation:

1. Texas A&M Transportation Institute, College Station, TX

2. The University of Texas at San Antonio, San Antonio, TX

3. Texas Department of Transportation, Austin, TX

Abstract

Traffic volumes are fundamental for evaluating transportation systems, regardless of travel mode. A lack of counts for non-motorized modes poses a challenge for practitioners developing and managing multimodal transportation facilities, whether they want to evaluate transportation safety or the potential need for infrastructure changes, or to answer other questions about how and where people bicycle and walk. In recent years, researchers and practitioners alike have been using crowdsourced data to supplement the non-motorized counts. As such, several methods and tools have been developed. The objective of this paper is to take advantage of new data sources that provide a limited and biased sample of trips and combine them with traditional counts to develop a practical tool for estimating annual average daily bicycle (AADB) counts. This study developed a direct-demand model for estimating AADB in Texas. Data from 100 stations, installed in 12 cities across the state, was used together with the crowdsourced Strava, roadway inventory, and American Community Survey data to develop the count model for estimating AADB. The results indicate that crowdsourced Strava data is an acceptable predictor of bicycle counts, and when used with the roadway functional class and number of high-income households in a block group, can provide quite an accurate AADB estimate (29% prediction error).

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3