Lessons Learned from the Real-World Deployment of a Connected Vehicle Testbed

Author:

Chowdhury Mashrur1,Rahman Mizanur1,Rayamajhi Anjan2,Khan Sakib Mahmud1,Islam Mhafuzul1,Khan Zadid1,Martin James3

Affiliation:

1. Glenn Department of Civil Engineering, Clemson University, Clemson, SC

2. Department of Electrical and Computer Engineering, Clemson University, Clemson, SC

3. School of Computing, Clemson University, Clemson, SC

Abstract

The connected vehicle (CV) system promises unprecedented safety, mobility, environmental, economic, and social benefits, which can be unlocked using the enormous amount of data shared between vehicles and infrastructure (e.g., traffic signals, centers). Real-world CV deployments, including pilot deployments, help solve technical issues and observe potential benefits, both of which support the broader adoption of the CV system. This study focused on the Clemson University Connected Vehicle Testbed (CU-CVT) with the goal of sharing the lessons learned from the CU-CVT deployment. The motivation of this study was to enhance early CV deployments with the objective of depicting the lessons learned from the CU-CVT testbed, which includes unique features to support multiple CV applications running simultaneously. The lessons learned in the CU-CVT testbed are described at three different levels: (i) the development of system architecture and prototyping in a controlled environment, (ii) the deployment of the CU-CVT testbed, and (iii) the validation of the CV application experiments in the CU-CVT. Field experiments with CV applications validated the functionalities needed for running multiple diverse CV applications simultaneously using heterogeneous wireless networking, and meeting real-time and non-real-time application requirements. The unique deployment experiences, related to heterogeneous wireless networks, real-time data aggregation, data dissemination and processing using a broker system, and data archiving with big data management tools, gained from the CU-CVT testbed, could be used to advance CV research and guide public and private agencies for the deployment of CVs in the real world.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Leveraging public cloud infrastructure for real-time connected vehicle speed advisory at a signalized corridor;International Journal of Transportation Science and Technology;2024-03

2. Development of the Data Pipeline for a Connected Vehicle Corridor;International Conference on Transportation and Development 2023;2023-06-13

3. Proof of Travel for Trust-Based Data Validation in V2I Communication;IEEE Internet of Things Journal;2023-06-01

4. DSRC Versus LTE-V2X: Empirical Performance Analysis of Direct Vehicular Communication Technologies;IEEE Transactions on Intelligent Transportation Systems;2023-05

5. Emerging Communication Technologies for V2X: Standards and Protocols;Smart Grid 3.0;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3