Urban Road Traffic Flow Prediction with Attention-Based Convolutional Bidirectional Long Short-Term Memory Networks

Author:

Liu Zhiquan1,Hu Yao12,Ding Xiangying1

Affiliation:

1. School of Mathematics and Statistics, Guizhou University, Guiyang, China

2. Guizhou Provincial Key Laboratory of Public Big Data, Guizhou University, Guiyang, China

Abstract

Accurate traffic prediction is critical for industry practitioners and researchers in intervening and dredging future traffic in advance to avoid traffic congestion. Considering that most prediction models fail to effectively capture the complex nonlinearity of traffic data and thus cannot obtain satisfactory prediction results, we propose a novel deep-learning architecture for traffic flow prediction, called AC-BLSTM (attention-based convolutional bidirectional long short-term memory). The proposed model captures traffic information through multilayer network architectures composed of convolutional bidirectional long short-term memory (conv-BiLSTM) network and attention mechanism. The spatiotemporal features of traffic flow are extracted by convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) network. Then attention mechanism combines the outputs of CNN and BiLSTM to assign corresponding weights to the features extracted at different times. In addition, we employ a parallel sub-module structure to model three temporal properties of traffic flow, that is, weekly, daily, and recent dependencies. Finally, the results of these three parts are fused to predict the traffic flow values through the fully connected (FC) layers. Experiment results using a real-world urban road traffic dataset demonstrate that compared with other competing models, the proposed model has better prediction performance.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3