Structures and Settlement Control of Yujingshan High-Speed Railway Tunnel Crossing Massive Rockfill in a Giant Karst Cave

Author:

Xie Yipeng1ORCID,Yang Junsheng1,Zhang Cong2,Fu Jinyang1

Affiliation:

1. School of Civil Engineering, Central South University, Changsha, Hunan

2. School of Civil Engineering, Central South University of Forestry and Technology, Changsha, Hunan

Abstract

The Yujingshan high-speed railway tunnel crosses a giant cavern system with a 108 × 104 m3 volume chamber and an 18 km long underground river. The massive project, which lasted three years, was eventually awarded the “Overcoming the Challenges” award by the International Tunneling and Underground Space Association (ITA) in 2020. However, since the cave chamber was filled with large-scale rockfill, structural settlement is a non-negligible problem. This paper presents the unique structures of a bridge supporting railway tracks wrapped by tunnel lining and the settlement control of the Yujingshan tunnel crossing massive rockfill in the giant cave. The geological characteristics and design considerations are systematically introduced. A three-dimensional coupling discrete element method (DEM) and finite difference method (FDM) numerical model and 13 months of long-term settlement monitoring were conducted to evaluate the settlement behavior. The results indicate that the morphology of cavern and internal deposits caused the whole rockfill to migrate to the lower left. The tunnel structure consequently developed a significant inclined settlement. The continuous construction load would increase the settlement value by 31.4%. The bottom reinforcement of steel-pipe pile with grouting could effectively inhibit settlement and differential settlement. Considering the simulation results, the tunnel bottom had greater settlement than the limit standard for high-speed railway embankment, which means this special structure form is reasonable for operation. Meanwhile, the monitoring results show that the tunnel bottom settlement in D3K279+891~D3K279+947 had not performed an apparent convergence trend after 13 months. Further structural monitoring and compensation grouting should be actively considered for operation maintenance.

Funder

Natural Science Foundation of Hunan Province

Science and Technology Bureau, Changsha

National Natural Science Foundation of China

Fundamental Research Funds for Central Universities of the Central South University

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3