Evaluation of Transportation System Resilience in the Presence of Connected and Automated Vehicles

Author:

Ahmed Shofiq1,Dey Kakan1,Fries Ryan2

Affiliation:

1. Department of Civil and Environmental Engineering, West Virginia University, Morgantown, WV

2. Department of Civil Engineering, Southern Illinois University Edwardsville, Edwardsville, IL

Abstract

Large-scale natural disasters challenge the resilience of the surface transportation system. The objective of this research was to develop a resilience model of the surface transportation system with a mixed-traffic environment and considering varying Connected and Automated Vehicle (CAV) penetration scenarios. As deployment of CAVs is expected to improve traffic operations, a resilience model was developed in this research to evaluate the resilience performance of a transportation system with several CAV penetration levels (0%, 25%, 50%, 75%, and 100%) for a given budget and recovery time. The proposed resilience quantification model was applied on a roadway network considering several disaster scenarios. The network capacity in relation to trips at any phase of disaster was compared with the pre-disaster trips to determine the system resilience. The capacity variation and the travel time variation were also estimated. The analysis showed that the resilience of the transportation system improved with CAVs in relation to travel time and capacity improvement. Link travel times were significantly improved by higher CAV penetration rate. The findings also suggested that higher penetration of CAVs (i.e., 50% or more) increased the recovery costs. For example, the recovery costs needed for medium and large-scale disasters were 50% and 90% higher, respectively, compared with the recovery costs for a small-scale disaster. These higher costs were primarily for the repair and replacement of intelligent infrastructure required to support the operation of CAVs.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cooperative Traffic Dispersion through Rerouting of Connected and Automated Vehicles in Urban Networks;Transportation Research Record: Journal of the Transportation Research Board;2024-06-07

2. A composite index framework for quantitative resilience assessment of road infrastructure systems;Transportation Research Part D: Transport and Environment;2024-06

3. Assessing resilience in mechanical systems: an industrial perspective;International Journal of Quality & Reliability Management;2024-03-12

4. A novel index for shearer system resilience in underground coal mines based on the operational environment;Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability;2024-02-11

5. Assessing Resilience in Urban Critical Infrastructures: Interdependencies and Considerations;Sustainable Cities in a Changing Climate;2023-11-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3