Utilizing Machine Learning for Cone Penetration Test-Based Soil Classification

Author:

Fatehnia Milad1ORCID,Mahmoudabadi Vahidreza2,Amiri Sharid3ORCID

Affiliation:

1. ECS Limited, LLC, Marietta, GA

2. Dataforensics, LLC, Atlanta, GA

3. California Department of Transportation, Santa Ana, CA

Abstract

The cone penetration test (CPT) is widely used in geotechnical engineering to assess soil properties. Traditional methods of interpreting CPT data and classifying soils have limitations and are time-consuming. Machine learning (ML) algorithms offer a data-driven approach to automate and improve soil classification based on CPT data. In this study, the applicability of ML techniques was investigated to measure the reliability of soil classification prediction using raw CPT data. A dataset comprising raw CPT data and corresponding soil classifications derived from the adjacent boreholes was prepared for training and testing the selected ML techniques. Five ML algorithms, namely logistic regression, the support vector machine, the random forest (RF), K-nearest neighbors (KNN), and extreme gradient boosting (XGBoost), were applied. The results showed that the RF algorithm outperformed other ML methods, achieving an F1-score of 0.896. Comparing the performance of different algorithms, the RF consistently showed the best results, followed by XGBoost and KNN. These findings highlight the potential of ML algorithms, particularly the RF, in accurately predicting soil classification based on CPT data, thus improving the efficiency and reliability of geotechnical engineering applications.

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3