Environmental and Economic Effects of Fuel Savings in Driving Phase Resulting from Substitution of Light Metals in European Passenger Car Production

Author:

Türe Yiğit12,Türe Cengiz3

Affiliation:

1. Institute of Graduate Programs, Program of Materials Science and Engineering, Eskisehir Technical University, Eskisehir, Turkey

2. Porsuk Vocational School, Electronics and Automation Department, Program of Mechatronics, Eskisehir Technical University, Eskisehir, Turkey

3. Faculty of Science, Department of Biology, Section of Ecology, Eskisehir Technical University, Eskisehir, Turkey

Abstract

The European Union (EU), which realizes one-quarter of the automobile production in the world, has made legal regulations to minimize fuel consumption and CO2 emissions in the automotive sector, to prevent global warming and climate change. Life cycle analysis for passenger cars revealed that 90% of this effect is caused by the driving phase of the vehicles. One of the practices used in the automotive industry to minimize the impact of these factors is to reduce the vehicle mass as much as possible. Aluminum (Al) and magnesium (Mg) are increasingly preferred lightweight materials, since the weight is a critical design element for automobile production. This study aims to evaluate the environmental and economic impacts of fuel consumption, fuel expense, and CO2 emission resulting from the driving cycle by creating a mathematical model of the weight savings achieved with Al and Mg substitution in the passenger car fleet produced in the EU. The results show that the average weight reduction per vehicle achieved by substituting light metals in passenger car production in the EU over the past 20 years has reached approximately 11.2% and that the positive effect on fuel consumption and CO2 emissions in the driving cycle will contribute to environmentally and economically sustainable road transport.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3