Assessment of Operational Effectiveness of SynchroGreen Adaptive Signal Control System in South Carolina

Author:

Jin Weimin1ORCID,Salek M Sabbir1ORCID,Chowdhury Mashrur1,Torkjazi Mohammad2ORCID,Huynh Nathan2ORCID,Gerard Patrick3ORCID

Affiliation:

1. Glenn Department of Civil Engineering, Clemson University, Clemson, SC

2. Department of Civil and Environmental Engineering, University of South Carolina, Columbia, SC

3. School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC

Abstract

An adaptive signal control system (ASCS) can adjust signal timings in real time based on traffic demands. The operational benefits of ASCS vary depending on the type of ASCS, corridor characteristics, and geographical area. This paper evaluates the operational performance of 11 ASCS corridors located throughout South Carolina. These corridors are operated using SynchroGreen, one of several types of ASCS, developed by TrafficWare. Based on the operational analysis, it is found that when SynchroGreen is operational, it reduces the travel time on the corridor by an average of 6.4% and improves travel time reliability by an average of 31.4% compared with when the conventional traffic signal control system (e.g., pre-timed and actuated signal control) is operational. SynchroGreen reduces travel time on a corridor on average 61% of the time during a day and on average 77% of the time during peak periods. Additionally, SynchroGreen improves travel time reliability on average 53% of the time during a day and on average 52% of the time during peak periods. The operational effectiveness of SynchroGreen in reducing travel time and improving travel time reliability is consistent in both directions on an hourly basis for eight corridors and five corridors, respectively. Lastly, SynchroGreen is found to produce greater operational benefits by reducing travel time if the average speed of a corridor is lower than or equal to 35 mph and the number of signals on a corridor is more than 10.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3