Development of a New Manual for Assessing Safety Hardware TL-3 Low-Profile Portable Concrete Barrier for High-Speed Applications

Author:

Silvestri Dobrovolny Chiara1,Shi Shengyi1,Kovar James1,Bligh Roger P.1,Hurlebaus Stefan1

Affiliation:

1. Texas A&M Transportation Institute, College Station, TX

Abstract

A sight-distance problem is associated with use of 32-in. tall concrete longitudinal barriers, specifically in certain work zone locations and at nighttime. These 32-in. tall barriers can obstruct drivers’ eyesight, making it difficult for drivers to detect oncoming vehicles on the other side of these barriers. To address this sight-distance problem while protecting the errant vehicles, researchers at the Texas Transportation Institute (TTI) developed a 20-in. tall low-profile portable concrete barrier (PCB) for use in low-speed work zones in the early 1990s. To address the problem for high-speed application, TTI researchers applied modifications to the 20-in. tall low-profile PCB. Researchers designed two retrofit metal rail systems to be added on top of the existing 20-in. tall low-profile PCB to address roadside and median applications. The systems successfully performed in full-scale crash testing according to NCHRP Report 350 Test Level (TL) 3 evaluation criteria. This paper describes the efforts to develop and evaluate the crashworthiness of a new low-profile PCB design for high-speed applications. The crash tests were performed following Manual for Assessing Safety Hardware (MASH) guidelines and evaluation criteria. Based on results from finite element computer simulations performed to aid design, MASH full-scale crash tests were conducted on a low-profile PCB system comprised of 26-in. tall, 30-ft long barrier segments, with a T-shaped profile. Based on constructability feedback, the sides of the barrier were formed with a negative 1:18 slope, which allows for ease of construction forming. The new low-profile PCB performed acceptably as a MASH TL-3 longitudinal barrier.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference13 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3