Grayscale Drone Inspection Image Enhancement Framework for Advanced Bridge Defect Measurement

Author:

Jeong Euiseok1,Seo Junwon1,Wacker James2

Affiliation:

1. Department of Civil and Environmental Engineering, South Dakota State University, Brookings, SD

2. United States Department of Agriculture-Forest Service, Forest Products Laboratory, Madison, WI

Abstract

This paper presents a framework to better identify and measure defects in a bridge using drone-based inspection images integrated with grayscale image enhancement techniques. For this study, a DJI Matrice 210 drone was used for the inspection of a three-span timber bridge with concrete decking located in Keystone, South Dakota. During the inspection, the drone recorded a series of videos of the bridge using the MOVie (MOV, video file extension) video format. MOV-based image analysis was conducted to identify a variety of defect types (i.e., efflorescence, water leakage, spalling, and discoloration) on the bridge. For improvement of defect visibility, the grayscale image enhancement technique was applied to determine visually enhanced images for the individual defect. The technique used grayscale image histogram processing that can adjust images using realignment of contrast histograms, in which contrasts of each pixel of the grayscale images have their own number from 0 for black to 255 for white in the image. With the enhanced images, pixel-based measurement was conducted to quantify the defects, including efflorescence (3.75 m2), water leakage (4.21 m2), spalling (0.74 m2), and discoloration (2.12 m2). Based on these findings, the grayscale drone inspection image enhancement technique enabled the demonstration of defect visibility adjustment and improvement for more reliable identification and measurement of the defects in the bridge.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3