Hazards-Based Duration Time Model with Priorities Considering Unobserved Heterogeneity Using Real-Time Traffic and Weather Big Data

Author:

Lee Songha1ORCID,Park Juneyoung2ORCID,Abdel-Aty Mohamed3ORCID

Affiliation:

1. Department of Smart City Engineering, Hanyang University, Ansan, Gyeonggi, South Korea

2. Department of Transportation and Logistics Engineering, Hanyang University, Ansan, Gyeonggi, South Korea

3. Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL

Abstract

Traffic crash-post management is very important for transportation agencies. Delays in clearing the scene after a crash can directly increase the likelihood of a secondary crash and cause more serious traffic congestion. To optimize the management strategies for non-recurrent congestion, it is important to understand the factors that affect incident clearance times. This paper develops a model to analyze the duration time on highways using various types of datasets, including real-time data at the time of or immediately before the crash, detailed time variables, and crash type, with an accelerated failure time model. The model includes the three parametric distributions and assumed randomness, which is called unobserved heterogeneity, and can parametrically estimate the time to hazard to provide the conditional probability that the crash will be resolved. The results show that the Weibull distribution model with random parameters was suitable for both injury and non-injury crashes. Specifically, factors such as whether a truck was involved, temporal speed difference, rain, and rollover status are related to the increase in the duration time. Also, when the weighted length of the response time and detection time are applied to the duration time, the shorter the response time, the shorter the duration time for injury crashes. If there are no injuries, the faster it will be detected and help arrive at the scene. On this result, it is expected that it will be possible to develop a highly accurate clearance time prediction model with artificial intelligence techniques by using more data samples or high-resolution vehicle trajectory data.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3