Methods for Estimating Axle Factors and Axle Classes from Vehicle Length Data

Author:

Avelar Raul E.1,Petersen Scott2,Lindheimer Tomas1,Ashraf Sruthi1,Minge Erik2

Affiliation:

1. Texas A&M Transportation Institute, College Station, TX

2. SRF Consulting Group, Minneapolis, MN

Abstract

This study developed methods to estimate axle factors and vehicle class from length-based data streams. A set of eight methods was proposed and evaluated in different testing schemes intended to observe performance on homogeneous and heterogeneous data. The initial analysis used length-based data from 61 sites in Wisconsin. The research team compared performance of the methods estimating axle factors and vehicle class proportions. Performance was comparable and consistent between homogeneous and heterogeneous subsets of data. The research team selected two methods for a final round of analysis based on their accuracy and robustness to heterogeneity. For the final round of analysis, the research team assembled a multistate dataset using data from Wisconsin and from 14 other states represented in a dataset from the Long Term Pavement Performance program. The final round of analysis compared performance under different seasons, facility type, and road character (urban vs. rural). Performance of the two identified methods was deemed appropriate and they are recommended for implementation.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3