Traffic Conflict Prediction at Signal Cycle Level Using Bayesian Optimized Machine Learning Approaches

Author:

Zheng Lai1ORCID,Hu Zhenlin1,Sayed Tarek2ORCID

Affiliation:

1. School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, China

2. UBC Bureau of Intelligent Transportation Systems and Freight Security – Engineering, Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia, Canada

Abstract

This study develops non-parametric models to predict traffic conflicts at signalized intersections at the signal cycle level using machine learning approaches. Three different datasets were collected, one from Surrey, Canada, and the other two from Los Angeles and Georgia, U.S.A. From the datasets, traffic conflicts measured by modified time to collision and traffic parameters such as traffic volume, shockwave area, platoon ratio, and shockwave speed were extracted. Multilayer perceptron (MLP), support vector regression (SVR), and random forest (RF) models were developed based on the Surrey dataset, and the Bayesian optimization approach was adopted to optimize the model hyperparameters. The optimized models were applied to the Los Angeles and Georgia datasets to test their transferability, and they were also compared to a traditional safety performance function (SPF) developed using negative binominal regression. The results show that all the three Bayesian optimized machine learning models have high predictive accuracy and acceptable transferability, and the MLP model is a little better than the SVR and RF models. In addition, all three models outperform the traditional SPF with regard to predictive accuracy. The model sensitivity analysis also show that the traffic volume and shockwave area have positive effects on traffic conflicts, while the platoon ratio has negative effects.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3