Extracting Horizontal Curvature Data from GIS Maps: Clustering Method

Author:

Bartin Bekir1,Ozbay Kaan2,Xu Chuan3

Affiliation:

1. Department of Civil Engineering, Altinbas University, Istanbul, Turkey

2. Department of Civil and Urban Engineering & Center for Urban Science and Progress (CUSP), Tandon School of Engineering, New York University, Brooklyn, NY

3. National United Engineering Laboratory of Integrated and Intelligent Transportation, Southwest Jiaotong University, Sichuan, China

Abstract

This paper presents the use of a clustering method for automatically estimating horizontal curvature data and crash modification factors (CMFs) using Geographic Information System (GIS) roadway shapefiles. The clustering method identifies distinct sections on a roadway, either curved or tangent, based on the proximity of the approximated curvature values of data points from GIS roadway centerline shapefiles, and calculates horizontal curvature data and the corresponding CMFs. The results of the clustering method are compared with two other methods: (1) the mobile access vehicle method based on field GPS measurements and (2) the manual data extraction method based on satellite images. The comparison was conducted on a total of 24.7 mi of four NJ rural two-lane roads. The results showed that the CMFs estimated by the clustering method were within 12.2 and 15.5% of the ones produced by the mobile asset vehicle and the manual data extraction method, respectively. In addition, the sensitivity of the manually extracted horizontal curvature data was examined by conducting three additional independent trials. The average percent difference in the calculated CMFs between trials was 15.5%. This study therefore concludes that the clustering method can produce CMF estimates as accurate as the two other methods method much more efficiently in relation to time and money.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3