Affiliation:
1. Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL
2. School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ
Abstract
Asphalt concrete (AC) aging reduces the resistance of flexible pavements to fatigue, thermal, and block cracking. Therefore, it is critical to understand the effects of AC aging on flexible pavement serviceability. Binder source has a significant effect on AC long-term aging. Therefore, it is necessary to develop a reliable, practical, and systematic method to quantify the effect of binder source on AC cracking resistance. Seven laboratory mixes were designed and produced at three asphalt binder replacement (ABR) levels using various binders, but same binder performance grade (PG). The AC mixes were tested using the Illinois Flexibility Index Test (I-FIT) under unaged and long-term aged conditions. Standard Superpave tests and temperature-frequency sweep tests, were conducted on virgin binders under various aging conditions. By comparing the binder rheological parameters and flexibility index (FI) of long-term aged AC specimens, the [Formula: see text] and m-value after 40-h of aging using a pressure aging vessel (PAV) were identified as valid indicators to reflect the effects of the binder source on AC long-term flexibility. A minimum [Formula: see text] of -8°C and m-value of 0.280 were proposed as the preliminary thresholds. A new parameter, [Formula: see text], which is defined as the m-value of 20-h PAV-aged binder minus the m-value of a 40-h PAV-aged binder, correlates well with the aging rate of AC. A binder with a high [Formula: see text] may induce an excessive drop in flexibility after long-term aging.
Subject
Mechanical Engineering,Civil and Structural Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献