Risk to Bicyclists in a Separated Path from Left Turns across Multiple Lanes: A Case for Protected-Only Left Turns

Author:

Saeidi Razavi Ray1,Furth Peter G.1

Affiliation:

1. Department of Civil and Environmental Engineering, Northeastern University, Boston, MA

Abstract

At signalized intersections, permitted left turns (i.e., on a green ball, after yielding) across multiple through lanes and across a separated bike lane or bike path present a threat to bicyclist safety. A conflict study of two such intersections with a bidirectional bike path found that when cyclists cross while a vehicle is ready to turn left and there is no opposing through traffic to block it, the chance of the left-turning motorist yielding safely was only 9%, and the chance of their yielding at all—including yielding only after beginning the turn, then stopping in the opposing through lanes—was still only 37%. Motorist non-yielding rates were worse toward bikes arriving during green, toward bikes approaching from the opposite direction (i.e., riding on the right side of the road), and toward bikes facing a queue with multiple left turning vehicles. Of 112 cyclists who arrived on green when there was at least one left-turning car, but no opposing through traffic blocking it, 73 had to slow or stop to avoid a collision. Although these conflicts could be essentially eliminated using protected-only left turn phasing (turn on green arrow), common existing criteria prefer permitted left turns to reduce vehicular delay. A case study shows how, by considering multiple signalization alternatives, it can be possible to convert left turns to protected-only phasing without imposing a substantial delay burden on vehicles or other road users.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference17 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3