Affiliation:
1. Department of Civil and Environmental Engineering, The Pennsylvania State University, State College, PA
2. Department of Civil and Environmental Engineering, Utah State University, Logan, UT
Abstract
This work investigated the impacts of COVID-19 on pedestrian behavior, answering two research questions using pedestrian push-button data from Utah traffic signals: How did push-button utilization change during the early pandemic, owing to concerns over disease spread through high-touch surfaces? How did the accuracy of pedestrian volume estimation models (developed pre-COVID based on push-button traffic signal data) change during the early pandemic? To answer these questions, we first recorded videos, counted pedestrians, and collected push-button data from traffic signal controllers at 11 intersections in Utah in 2019 and 2020. We then compared changes in push-button presses per pedestrian (to measure utilization), as well as model prediction errors (to measure accuracy), between the two years. Our first hypothesis of decreased push-button utilization was partially supported. The changes in utilization at most (seven) signals were not statistically significant; yet, the aggregate results (using 10 of 11 signals) saw a decrease from 2.1 to 1.5 presses per person. Our second hypothesis of no degradation of model accuracy was supported. There was no statistically significant change in accuracy when aggregating across nine signals, and the models were actually more accurate in 2020 for the other two signals. Overall, we concluded that COVID-19 did not significantly deter people from using push-buttons at most signals in Utah, and that the pedestrian volume estimation methods developed in 2019 probably do not need to be recalibrated to work for COVID conditions. This information may be useful for public health actions, signal operations, and pedestrian planning.
Subject
Mechanical Engineering,Civil and Structural Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献