Laboratory Investigation of Draindown Behavior of Open-Graded Friction-Course Mixtures Containing Banana and Sugarcane Bagasse Natural Fibers

Author:

Sharma Ashish1ORCID,Choudhary Rajan1ORCID,Kumar Ankush1ORCID

Affiliation:

1. Department of Civil Engineering, Indian Institute of Technology, Guwahati, Assam, India

Abstract

Open-graded friction courses (OGFCs) are asphalt paving mixes with a higher number of interconnecting air voids to provide advantages with respect to improved drainage, increased dry/wet surface friction resistance, decreased splash and spray, and reduced aquaplaning. However, binder draindown has been a recurring issue during the manufacture, storage, transportation, and service life of OGFC mixtures. The addition of stabilizers in the form of fiber is often used with OGFC mixes to counteract the draindown. Increasing environmental awareness, the depletion of fossil resources, and the rise of global waste problems have necessitated the use of locally accessible natural fibers as an alternative to expensive synthetic fibers. In this study, the banana fiber obtained from the waste pseudo-stem of the banana plant post-harvesting and the sugarcane bagasse fiber obtained from the post-residual after sugar extraction is explored along with a commercial cellulose fiber to evaluate the draindown characteristics of OGFC mixtures. A cone penetration test and fiber absorption test was performed on the fiber-mixed asphalt binder. The draindown characteristics of 168 combinations of OGFC mixes were evaluated considering various parameters, viz. fiber parameters (types, lengths, dosages), binder dosage, binder types (unmodified binder and polymer-modified binder), and time period. Finally, a statistical analysis was conducted to determine the efficacy of different influencing factors. The best performance was exhibited by banana fiber, which had a dosage of 0.45% and a length of 9 mm, followed by sugarcane bagasse and cellulose fiber. All the input factors were found to be statistically significant.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference34 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3