Calibration of a Mechanistic-Empirical Cracking Model Using Network-Level Field Data

Author:

Wu Rongzong1ORCID,Harvey John1ORCID,Lea Jeremy1ORCID,Jones David1ORCID,Louw Stephanus1ORCID,Mateos Angel2ORCID,Hernandez-Fernandez Noe3ORCID,Shrestha Raghubar4,Holland Joe5

Affiliation:

1. Department of Civil and Environment Engineering, University of California, Davis, CA

2. Department of Civil and Environment Engineering, University of California, Berkeley, CA

3. Institute of Engineering, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico

4. Division of Maintenance, Office of Asphalt Pavement, California Department of Transportation, Sacramento, CA

5. Division of Research, Innovation and System Information, California Department of Transportation, Sacramento, CA

Abstract

At the core of a mechanistic-empirical (M-E) pavement design method is a collection of performance models that each predicts the development of a specific pavement distress, such as fatigue cracking and surface rutting. Each model has both mechanistic and empirical parts. The empirical parts need to be calibrated to remove bias and increase prediction accuracy. This process has traditionally been conducted with small numbers of field sections for which materials may or may not have been sampled and tested. This paper presents a new calibration approach that uses network-level field data and statewide distributions of material properties, without having to sample and test every individual calibration section. The calibration of the fatigue and reflection cracking models for CalME, the M-E design software developed for the California Department of Transportation, is used as an example to illustrate the new approach. The new approach works by correlating the statistical distributions of M-E design inputs with the statistical distribution of pavement performance, both at the network level. The uncertainties affecting pavement performance are divided into those specific to a given project (within-project variability) and those that vary between projects (between-project variability). This distinction allows a clear definition of design reliability. The results showed that the new approach can overcome some of the network-level data limitations and provides a reasonable calibration ready for routine pavement design.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference15 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Keynote Presentation: Improving Pavement Sustainability through Integrated Design, Construction, Asset Management, LCA, LCCA, and S-LCA;The Second International Conference on Maintenance and Rehabilitation of Constructed Infrastructure Facilities (MAIREINFRA2);2023-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3