High Load Jacking Frames for Pin and Hanger Replacement at the Robert Moses Causeway

Author:

Han Liwei1,Ye Qi1,Wei Dan1

Affiliation:

1. CHI Consulting Engineers, Summit, NJ

Abstract

An innovative design of jacking frames was developed for pin and hanger replacement in Robert Moses Causeway (RMC) bridge in Suffolk County, New York. The robust and efficient design of the jacking frames results in a system with improved safety, performance, constructability, and economy. A fully integrated approach for design, fabrication, and construction was employed for higher quality and efficiency. A detailed and precise 3D model was created and directly used for finite element (FE) modeling, producing contract and shop drawings, and designing of temporary work platforms. This paper provides an overview of the integrated design approach and system design, and documents the computational study for this system (global analysis, stress analysis, and large-displacement stability analysis). There are many aging steel bridges in the U.S. and abroad that have similar pin and hanger systems, and jacking frames will be needed to replace those pins and hangers when they exhaust their useful service life. The concepts and details of the jacking frames can easily be emulated by engineers for developing similar safe and robust systems for suspended truss spans and other applicable bridge structures.

Funder

Skanska USA Civil

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3