Evaluating Friction Characteristics of High Friction Surface Treatment Application Under Varied Polishing and Slippery Conditions

Author:

Roshan Alireza1ORCID,Abdelrahman Magdy1ORCID

Affiliation:

1. Department of Civil, Architectural, and Environmental Engineering, Missouri University of Science and Technology, Rolla, MO

Abstract

The frictional attributes of high friction surface treatment (HFST) play a crucial role in ensuring optimal traffic safety, particularly in wet weather conditions. Friction consists of two important components: adhesion and hysteresis. This research focuses on evaluating these essential factors in HFST using two different aggregates and two distinct sizes by considering various abrasion and polishing methods. To isolate these components for assessment, testing was carried out under various slippery conditions, including dry, wet with water, and wet with water + soap. The inclusion of liquid hand soap in the test procedure effectively minimized or even eliminated the adhesion component’s influence, making it possible to primarily focus on the hysteresis component. Consequently, the British Pendulum Number (BPN) measured in this research predominantly reflected the hysteresis-related friction. The analysis of variance results emphasized the substantial impact of different abrasion and polishing methods on the BPN values obtained under various surface conditions. Notably, Micro-Deval Abrasion (MDA) with 105, 180, and 240 min abrasion exhibited the most pronounced influence on BPN variation and the higher F-value for the MDA 105 min indicated that this specific abrasion time exerted a more significant influence on the variation in BPN values than other factors. Furthermore, the utilization of the Aggregate Image Measurement System yielded valuable insights into the micro-texture of the aggregates. It revealed that the calcined bauxite HFST size is anticipated to provide the rougher surface morphology (texture) on a pavement surface compared with other sources in this study, thereby contributing to high pavement surface friction. The findings from this study contribute to a deeper understanding of the frictional characteristics of HFST under different scenarios, providing valuable insights for optimizing HFST applications to enhance road safety and skid resistance.

Funder

Missouri University of Science and Technology (MS&T) sources

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3