Spatiotemporal Demand Prediction Model for E-Scooter Sharing Services with Latent Feature and Deep Learning

Author:

Ham Seung Woo1,Cho Jung-Hoon1,Park Sangwoo2,Kim Dong-Kyu13

Affiliation:

1. Department of Civil and Environmental Engineering, Seoul National University, Seoul, Republic of Korea

2. VP Product Deer Corporation Co., Ltd., Seongdong-gu, Seoul, Republic of Korea

3. Institute of Construction and Environmental Engineering, Seoul National University, Seoul, Republic of Korea

Abstract

The electric scooter (e-scooter) sharing service has attracted significant attention because of its extensive usage and eco-friendliness. Since e-scooters are mostly accessed by foot, the presence of e-scooters within walking distance has a crucial effect on the service quality. Therefore, to maintain appropriate service quality, relocation strategies are often used to properly distribute e-scooters within service areas. There are extensive literatures on demand forecasting for an efficient relocation. However, the study of the relocation of small-scale spatial units within walking distance level is still inadequate because of the sparsity of demand data. This research aims to establish an effective methodology for predicting the demand for e-scooters in high spatial resolution. A new grid-based spatial setting was created with the usage data. The model in the methodology predicts not only the identified demand but also the unmet demand to increase practicality. A convolutional autoencoder is used to obtain the latent feature that can reduce the problem of representing sparse data. An encoder–recurrent neural network–decoder (ERD) framework with a convolutional autoencoder resulted in a huge improvement in predicting spatiotemporal events. This new ERD framework shows enhanced prediction performance, reducing the mean squared error loss to 0.00036 from 0.00679 compared with the baseline long short-term memory model. This methodological strategy has its significance in that it can solve any prediction issue with spatiotemporal data, even those with sparse data problems.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3