Optimization of the Self-Healing Efficiency of Bacterial Concrete Using Impregnation of Three Different Precursors into Lightweight Aggregate

Author:

Omar Omar1,Mousa Momen R.2ORCID,Hassan Marwa1ORCID,Hungria Ricardo1ORCID,Gavilanes Andrea1ORCID,Arce Gabriel1ORCID,Milla Jose3ORCID,Rupnow Tyson3ORCID

Affiliation:

1. Department of Construction Management, Louisiana State University, Baton Rouge, LA

2. Department of Engineering Technology, Sam Houston State University, Huntsville, TX

3. Louisiana Transportation and Research Center, Baton Rouge, LA

Abstract

Implementation of self-healing concrete technologies is a promising approach to enhance the durability of the transportation infrastructure. Among these technologies, bacterial concrete has the potential to seal microcracks through microbial-induced calcite precipitation (MICP). To ensure the viability of this technology, bacterial protection is essential given concrete’s harsh environment. Additionally, the success of this technology depends on the presence of an adequate mineral precursor compound and nutrient for the bacteria. As such, the main objective of this study was to optimize the healing efficiency of bacterial concrete in subtropical climates through the vacuum impregnation of bacteria into a lightweight aggregate (LWA). To achieve this objective, mortar samples were prepared while incorporating different combinations of precursors (magnesium acetate, calcium lactate, and sodium lactate) and alkali-resistant healing agent Bacillus pseudofirmus bacteria (with and without). In addition, a control sample was prepared without bacteria or precursors for comparative purposes. For each sample, three mortar cubes and three mortar beams were cast and used to evaluate the compressive strength, crack healing efficiency, and flexural strength recovery. Additionally, the morphology of healing products was observed in bacteria-containing samples under scanning electron microscopy with energy x-ray dispersive spectroscopy using a scanning electron microscope (SEM) with EDAX Pegasus energy dispersive spectroscopy (EDS). Results showed that self-healing bacterial concrete could be optimized (without significant reduction in mechanical properties) if Bacillus pseudofirmus bacteria at a concentration of 108 cells/ml and sodium lactate precursor at a concentration of 75 mM/l were impregnated into lightweight aggregate.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3