Enhancing the Performance of a Model to Predict Driving Distraction with the Random Forest Classifier

Author:

Ahangari Samira1,Jeihani Mansoureh1ORCID,Ardeshiri Anam1ORCID,Rahman Md Mahmudur2,Dehzangi Abdollah3ORCID

Affiliation:

1. Department of Transportation and Infrastructure Studies, Morgan State University, Baltimore, MD

2. Department of Computer Science, Morgan State University, Baltimore, MD

3. Department of Computer Science, Rutgers University, New Brunswick, NJ

Abstract

Distracted driving is known to be one of the main causes of crashes in the United States, accounting for about 40% of all crashes. Drivers’ situational awareness, decision-making, and driving performance are impaired as a result of temporarily diverting their attention from the primary task of driving to other unrelated tasks. Detecting driver distraction would help in adapting the most effective countermeasures. To tackle this problem, we employed a random forest (RF) classifier, one of the best classifiers that has attained promising results for a wide range of problems. Here, we trained RF using the data collected from a driving simulator, in which 92 participants drove under six different distraction scenarios of handheld calling, hands-free calling, texting, voice command, clothing, and eating/drinking on four different road classes (rural collector, freeway, urban arterial, and local road in a school zone). Various driving performance measures such as speed, acceleration, throttle, lane changing, brake, collision, and offset from the lane center were investigated. Using the RF method, we achieved 76.5% prediction accuracy on the independent test set, which is over 8.2% better than results reported in previous studies. We also obtained a 76.6% true positive rate, which is 14% better than those reported in previous studies. Such results demonstrate the preference of RF over other machine learning methods to identify driving distractions.

Funder

maryland department of transportation

Motor Vehicle Administration

Maryland Highway Safety Office

Urban Mobility

Equity Center at Morgan State University

Tier 1 University Transportation Center

U.S. DOT University Transportation Centers

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference35 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3