Affiliation:
1. Department of Civil and Resource Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
Abstract
Tire-derived aggregate (TDA), a relatively new construction material, has been gaining acceptance as a backfill material for embankments, trenches, and earth-retaining structures because of its lightweight and excellent geotechnical properties. Type A TDA has a basic geometric shape, with particles approximately 12 to 100 mm in size. As a result of the simplicity and accuracy of the direct shear test, most laboratories choose this test in preference to more complex tests. However, TDA requires large-scale direct shear apparatus because of the consistently large size of its particles, and few facilities own this type of apparatus. Depending on the shear box dimensions, the aspect ratio of the particle size to the box dimensions may lead to variations in the shear strength results of the sample being evaluated. This research focuses on studying the effect of TDA sample size on the shear strength results of direct shear tests by using five different shear box sizes. The findings show that the angle of internal friction increases slightly as the dimensions of the shear box decrease. It was found that the maximum variation in the angle of internal friction and the cohesion results of the different shear boxes was only 1.9° and 2.4 kPa, respectively. These differences should be taken into consideration when TDA shear test results are used in the geotechnical design. It is recommended that a shear box with an aspect ratio (W/Dmax) greater than or equal to 4 should be used when evaluating the shear strength parameters of TDA.
Subject
Mechanical Engineering,Civil and Structural Engineering
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献