On the Possibilities of Efficient Air Traffic Monitoring through Complex Network Clustering Based Airspace Sub-Sectorization: A Multi-Objective Discrete Particle Swarm Optimization Approach

Author:

Chandra Aitichya1ORCID,Hazra Sayan2ORCID,Verma Ashish1ORCID,Sooraj K.P.3ORCID

Affiliation:

1. Department of Civil Engineering, Indian Institute of Science (IISc) Bangalore, Bangalore, Karnataka, India

2. Department of Computer Science and Engineering, Pondicherry University, Puducherry, India

3. Air Traffic Management, Airports Authority of India (AAI), Anna International Airport, Chennai, Tamil Nadu, India

Abstract

This study models the airspace sub-sectorization problem as a multi-objective complex network clustering problem. A decomposition-based discrete particle swarm optimization (DPSO) algorithm is then used to solve the problem, followed by applying the minimum bounding geometry method to design convex and compact boundaries. An Indian airspace sector was considered to validate the proposed framework. The waypoints and routes within the sector were represented as a network graph, and discretized traffic loads were randomly allotted to the vertices to guide the DPSO. The maximum number of generations or iterations was set as the termination criteria. The proposed approach generates clusters that result in all sub-sectors having a medium traffic load, ensuring equity that is difficult to achieve. This framework offers enough flexibility to avoid several strict constraints, thereby reducing the problem’s complexity. Moreover, the proposed framework improves the adaptability of sub-sectors to network evolution and traffic conditions, recognizing the hierarchical characteristics of air transport networks. The present research also motivates several research opportunities and possibilities for future air traffic management systems.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3