Evaluating Recurring Traffic Congestion using Change Point Regression and Random Variation Markov Structured Model

Author:

Kidando Emmanuel1,Moses Ren1,Sando Thobias2,Ozguven Eren E.1

Affiliation:

1. Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Tallahassee, FL

2. School of Engineering, The University of North Florida, College of Computing, Engineering, and Construction, Jacksonville, FL

Abstract

This study develops a probabilistic framework that evaluates the dynamic evolution of recurring traffic congestion (RTC) using the random variation Markov structured regression (MSR). This approach integrates the Markov chains assumption and probit regression. The analysis was performed using traffic data from a section of Interstate 295 located in Jacksonville, Florida. These data were aggregated on a 5-minute basis for 1 year (2015). Estimating discrete traffic states to apply the MSR model, this study established a definition of traffic congestion using Bayesian change point regression (BCR), in which the speed–occupancy relationship was explored. The MSR model with flow rate as a covariate was then used to estimate the probability of RTC occurrence. Findings from the BCR model suggest that the morning peak congested state occurs once speed is below 58 miles per hour (mph), whereas the evening peak period occurs at a speed below 55 mph. Evaluating the dynamics of traffic states over time, the Bayesian information criterion confirmed the hypothesis that a first-order Markov chain assumption is sufficient to characterize RTC. Moreover, the flow rate in the MSR model was found to be statistically significant in influencing the transition probability between the traffic regimes at 95% posterior credible interval. The knowledge of RTC transition explained by the approaches presented here will facilitate developing effective intervention strategies for mitigating RTC.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Connected Vehicle Data for Risk Analysis and Transportation Performance Evaluation;Transportation Research Record: Journal of the Transportation Research Board;2024-05-31

2. A fundamental diagram based hybrid framework for traffic flow estimation and prediction by combining a Markovian model with deep learning;Expert Systems with Applications;2024-03

3. Automatic Identification of Near Stationary Traffic States Using Changepoint Detection Method;Transportation Research Record: Journal of the Transportation Research Board;2022-04-21

4. A Data-Driven Method for Congestion Identification and Classification;Journal of Transportation Engineering, Part A: Systems;2022-04

5. YAPAY SİNİR AĞLARI ve DESTEK VEKTÖR MAKİNELERİ YÖNTEMLERİ ile BÖLGESEL TRAFİK YOĞUNLUK TAHMİNİ;Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi;2021-10-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3