Non-Stationary Time Series Model for Station-Based Subway Ridership During COVID-19 Pandemic: Case Study of New York City

Author:

Moghimi Bahman1ORCID,Kamga Camille1,Safikhani Abolfazl2,Mudigonda Sandeep3ORCID,Vicuna Patricio1

Affiliation:

1. Department of Civil Engineering, City College of New York, NY

2. Department of Statistics, University of Florida, Gainesville, FL

3. Region-2 University Transportation Research Center, New York, NY

Abstract

The COVID-19 pandemic in 2020 has caused sudden shocks in transportation systems, specifically the subway ridership patterns in New York City (NYC), U.S. Understanding the temporal pattern of subway ridership through statistical models is crucial during such shocks. However, many existing statistical frameworks may not be a good fit to analyze the ridership data sets during the pandemic, since some of the modeling assumptions might be violated during this time. In this paper, utilizing change point detection procedures, a piecewise stationary time series model is proposed to capture the nonstationary structure of subway ridership. Specifically, the model consists of several independent station based autoregressive integrated moving average (ARIMA) models concatenated together at certain time points. Further, data-driven algorithms are utilized to detect the changes of ridership patterns as well as to estimate the model parameters before and during the COVID-19 pandemic. The data sets of focus are daily ridership of subway stations in NYC for randomly selected stations. Fitting the proposed model to these data sets enhances understanding of ridership changes during external shocks, both in relation to mean (average) changes and the temporal correlations.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference33 articles.

1. Economic and social consequences of human mobility restrictions under COVID-19

2. https://www.nytimes.com/2020/03/22/nyregion/Coronavirus-new-York-epicenter.html.

3. https://www.nytimes.com/interactive/2020/us/coronavirus-stay-at-home-order.html.

4. The Four-Step Model

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3