A Zero-Inflated Negative Binomial Regression Model to Evaluate Ship Sinking Accident Mortalities

Author:

Chai Tian12,Xiong De-qi1,Weng Jinxian3

Affiliation:

1. Environmental Science and Engineering College, Dalian Maritime University, Dalian, China

2. Navigation Institute, Jimei University, Xiamen Fujian, China

3. College of Transport and Communications, Shanghai Maritime University, Shanghai, China

Abstract

Sinking accidents are a seafarer’s nightmare. Using 10 years’ of worldwide sinking accident data, this study aims to develop a mortality count model to evaluate the human life loss resulting from sinking accidents using zero-inflated negative binomial regression approaches. The model results show that the increase of the expected human life loss is the largest when a ship suffers a precedent accident of capsizing, followed by fire/explosion or collisions. Lower human life loss is associated with contact and machinery/hull damage accidents. Consistent with our expectation, cruise ships involved in sinking accidents usually suffer more human life loss than non-cruise ships and there is be a bigger mortality count for sinking accidents that occur far away from the coastal area/harbor/port. Fatalities can be less when the ship is moored or docked. The results of this study are beneficial for policy-makers in proposing efficient strategies to reduce sinking accident mortalities.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deciphering spatial heterogeneity of maritime accidents considering impact scale variations;Maritime Policy & Management;2024-05-05

2. Enhanced Aggregate Framework to Model Crash Frequency by Accommodating Zero Crashes by Crash Type;Transportation Research Record: Journal of the Transportation Research Board;2023-06-07

3. Poisson and negative binomial regression models for zero-inflated data: an experimental study;Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics;2022-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3