Crowd-Sensing Road Surface Quality Using Connected Vehicle Data

Author:

Chen Jinzhu1ORCID,Grimm Donald K1ORCID,Bai Fan1,Grace John1ORCID,Relan Sangeeta1,Vavrik William2ORCID

Affiliation:

1. General Motors, Warren, MI

2. Applied Research Associates, Inc., Champaign, IL

Abstract

This work presents an approach for collecting road surface data using connected vehicles. Road surface readings from multiple production vehicles were collected and aggregated to estimate road roughness measured by the International Roughness Index (IRI). The analysis compared multiple instances of connected vehicle data with high speed pavement profile vehicle (Class 1 profiler) data. A separate analysis compared multiple instances of connected vehicle data to an advanced walking profiler. Results demonstrate the feasibility of harvesting road surface data from the existing connected vehicles to support continuous road surface monitoring applications. Benefits include more timely acquisition of pavement data, broader coverage of the road network, and potential for aiding existing survey fleet in targeting early signs of pavement degradation. Collected roughness measurements were found to be closely aligned with reference devices that were employed as part of this study. A regional experiment in the Detroit Metropolitan area that covered 64 mi of roadways found that the connected vehicle data was highly correlated with Class 1 profiler data where 83% of traveled miles had a 0.8 or higher correlation. Moreover, 85% of the measurements had small absolute errors less than 50 in./mi and half of the measurements had absolute errors less than 20 in./mi. A test track experiment at Virginia Tech Transportation Institute Smart Road facility compared the connected vehicle data to the advanced walking profiler and showed that the correlations for repeatability and reproducibility are 0.90 and 0.91, respectively, which are very close to the standard requirement for certified profilers.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3