Artificial Intelligence-Aided Automated Detection of Railroad Trespassing

Author:

Zaman Asim1,Ren Baozhang2,Liu Xiang1

Affiliation:

1. Department of Civil and Environmental Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ

2. Department of Computer Science, Rutgers, The State University of New Jersey, Piscataway, NJ

Abstract

Trespassing is the leading cause of rail-related deaths and has been on the rise for the past 10 years. Detection of unsafe trespassing of railroad tracks is critical for understanding and preventing fatalities. Witnessing these events has become possible with the widespread deployment of large volumes of surveillance video data in the railroad industry. This potential source of information requires immense labor to monitor in real time. To address this challenge this paper describes an artificial intelligence (AI) framework for the automatic detection of trespassing events in real time. This framework was implemented on three railroad video live streams, a grade crossing and two right-of-ways, in the United States. The AI algorithm automatically detects trespassing events, differentiates between the type of violator (car, motorcycle, truck, pedestrian, etc.) and sends an alert text message to a designated destination with important information including a video clip of the trespassing event. In this study, the AI has analyzed hours of live footage with no false positives or missed detections yet. This paper and its subsequent studies aim to provide the railroad industry with state-of-the-art AI tools to harness the untapped potential of an existing closed-circuit television infrastructure through the real-time analysis of their data feeds. The data generated from these studies will potentially help researchers understand human factors in railroad safety research and give them a real-time edge on tackling the critical challenges of trespassing in the railroad industry.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference14 articles.

1. The Fixing America’s Surface Transportation Act (P.L. 114-94). Federal Railroad Administration (FRA), U.S. Department of Transportation, 2015.

2. How close are we to solving the problem of automated visual surveillance?

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3