Real-Time Queue Length Estimation for Signalized Intersections Using Single-Channel Advance Detector Data

Author:

Pudasaini Pramesh1ORCID,Karimpour Abolfazl2,Wu Yao-Jan1ORCID

Affiliation:

1. Department of Civil and Architectural Engineering and Mechanics, The University of Arizona, Tucson, AZ

2. College of Engineering, State University of New York Polytechnic Institute, Utica, NY

Abstract

Queue length is one of the most important metrics required for the performance assessment of signalized intersections. However, the current methodology of estimating queue length in the literature suffers from several drawbacks, including unstable estimation and the requirement for multiple data sources. Moreover, for single-channel advance detection, which is a common detection configuration for signal control in many U.S. cities, manual parameter calibration is required. To bridge these gaps, this study proposes a cycle-based maximum queue length estimation method based on: (a) the empirical observation of breakpoints in the time gap between successive actuations; and (b) the identification of queue status for all detector actuations in a cycle. Maximum queue length for cycles with long queues is estimated based on the saturation flow rate and the trajectory of the last vehicle in the queue. The proposed methodology was implemented on two study intersections in Tucson, Arizona. Results showed that using the proposed method, queue length can be estimated with mean absolute percentage errors of 14.77% and 15.1% and mean absolute errors of 25 ft and 42.5 ft. The results showed significant improvement in queue length estimation from single-channel detection data when compared with similar methods in the literature. The proposed method can help transportation agencies accurately estimate queue length at intersections with single-channel advance detection without the need for manual field data collection and without installing lane-by-lane detection.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3