Improved Nighttime Traffic Detection Using Day-To-Night Image Transfer

Author:

Guo Feng1ORCID,Liu Jian1,Xie Quanyi1,Chang Honglei1

Affiliation:

1. School of Qilu Transportation, Shandong University, Jinan City, Shandong Province, China

Abstract

With the rapid development of convolutional neural networks (CNNs), real-time traffic monitoring, which benefits both traffic optimization and management, has been widely applied with smart cameras on streets. However, compared with the daytime traffic detection, nighttime traffic detection is limited by labeling annotations and is thus unstable, inaccurate, and inefficient in practice. To address this issue, this study proposes to use the augmented nighttime traffic images generated by cycle generative adversarial networks (CycleGAN) for better nighttime detection performance. Using CycleGAN, transferred nighttime traffic images are generated by using the daytime traffic images, as both share the same annotations of traffic instances in the daytime. For comparison, different learning rates and crop sizes are adopted for day-to-night traffic image transfer. The previously proposed detection network, dense traffic detection network (DTDNet), is adopted to train the prepared image data set. The indicators of mean average precision (mAP), precision, and recall are adopted for training performance evaluation and comparison. Based on the visualization results, CycleGAN, with a learning rate of 2e-5 and a crop size of 64, has better performance on day-to-night traffic image transfer with our proposed image data set. Considering the indicators of training performance, DTDNet, with 60% of transferred nighttime images and 40% of the original images, has better accuracy in four categories. Overall, this study provides a possible solution for addressing the issue of training data limitation in nighttime traffic detection and demonstrates the potential of GAN-based data augmentation in the transportation domain.

Funder

Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved Nighttime Vehicle Detection Using the Cross-Domain Image Translation;Journal of Transportation Engineering, Part A: Systems;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3