Modeling and Evaluating Traffic Flow at Sag Curves When Imposing Variable Speed Limits on Connected Vehicles

Author:

Nezafat Reza Vatani1,Beheshtitabar Ehsan1,Cetin Mecit1,Williams Elizabeth2,List George F.2

Affiliation:

1. Department of Civil & Environmental Engineering, Old Dominion University, Norfolk, VA

2. Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC

Abstract

Sag curves, road segments where the gradient changes from downwards to upwards, generally reduce the roadway capacity and cause congestion. This results from a change in longitudinal driving behavior when entering a sag curve as drivers tend to reduce speeds or increase headways as vehicles reach the uphill section. In this research, a control strategy is investigated through manipulating the speed of connected vehicles (CVs) in the upstream of the sag curve to avoid the formation of bottlenecks caused by the change in driver behavior. Traffic flow along a sag curve is simulated using the intelligent driver model (IDM), a time-continuous car-following model. A feedback control algorithm is developed for adjusting the approach speeds of CVs so that the throughput of the sag curve is maximized. Depending on the traffic density at the sag curve, adjustments are made for the speeds of the CVs. A simulation-based optimization method using a meta-heuristic algorithm is employed to determine the critical control parameters. Various market penetration rates for CVs are also considered in the simulations. Even at relatively low market penetration rates (e.g., 5–10%), significant improvements in travel times and throughput are observed.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3