Interpretable Machine Learning for Mode Choice Modeling on Tracking-Based Revealed Preference Data

Author:

Dahmen Victoria1ORCID,Weikl Simone2ORCID,Bogenberger Klaus1ORCID

Affiliation:

1. Traffic Engineering and Control, Technical University of Munich, Munich, Germany

2. Artificial Intelligence for Infrastructure and Urban Development, Regensburg University of Applied Sciences, Regensburg, Germany

Abstract

Mode choice modeling is imperative for predicting and understanding travel behavior. For this purpose, machine learning (ML) models have increasingly been applied to stated preference and traditional self-recorded revealed preference data with promising results, particularly for extreme gradient boosting (XGBoost) and random forest (RF) models. Because of the rise in the use of tracking-based smartphone applications for recording travel behavior, we address the important and unprecedented task of testing these ML models for mode choice modeling on such data. Furthermore, as ML approaches are still criticized for leading to results that are hard to understand, we consider it essential to provide an in-depth interpretability analysis of the best-performing model. Our results show that the XGBoost and RF models far outperform a conventional multinomial logit model, both overall and for each mode. The interpretability analysis using the Shapley additive explanations approach reveals that the XGBoost model can be explained well at the overall and mode level. In addition, we demonstrate how to analyze individual predictions. Lastly, a sensitivity analysis gives insight into the relative importance of different data sources, sample size, and user involvement. We conclude that the XGBoost model performs best, while also being explainable. Insights generated by such models can be used, for instance, to predict mode choice decisions for arbitrary origin–destination pairs to see which impacts infrastructural changes would have on the mode share.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3