Single-Lane Roundabout Manager under Fully Automated Vehicle Environment

Author:

Martin-Gasulla Marilo1,Elefteriadou Lily1

Affiliation:

1. Department of Civil and Coastal Engineering, University of Florida, Gainesville, FL

Abstract

In the advent of new automation and communication technologies, the introduction of connected and autonomous vehicles (CAVs) can make efficient use of the space on our road networks. Since roundabouts suffer from lower efficiencies when traffic flows are unbalanced and unfamiliar drivers are present, CAVs have the potential to improve traffic operations, reducing lost time and inefficiency in gap-usage. The aim of this research is to take advantage of those recently available technologies to design a traffic management system for roundabouts. Such a system can provide CAVs with optimal trajectories to negotiate the roundabout, maximizing throughput and minimizing control delay. The rule-based Roundabout Manager algorithm developed considers the roundabout as a whole system, assessing the priority of incoming vehicles on a first-come-first-served scheduling to solve conflicts. The management system takes into consideration the geometry of the roundabout, including the flared entries and exits and the location of conflict sections based on merging trajectories of vehicles in negotiating the roundabout. To illustrate the operation of the algorithm, a total of 15 undersaturated demand scenarios with 10 replications per scenario were simulated. From the results, it can be concluded that the system can reduce control delay for medium demand scenarios, maximizing the throughput for all demand scenarios. The Roundabout Manager can work in real time providing optimized trajectories in less than 0.02 s at any traffic flow rate simulated.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3