Assessing and Predicting Mobility Improvement of Integrating Bike-Sharing into Multimodal Public Transport Systems

Author:

Kapuku Christian1ORCID,Kho Seung-Young2ORCID,Kim Dong-Kyu2ORCID,Cho Shin-Hyung3ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Seoul National University, Seoul, Republic of Korea

2. Institute of Construction and Environmental Engineering, Seoul National University, Seoul, Republic of Korea

3. School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA

Abstract

New shared mobility services have become increasingly common in many cities and shown potential to address urban transportation challenges. This study aims to analyze the mobility performance of integrating bike-sharing into multimodal transport systems and develop a machine learning model to predict the performance of intermodal trips with bike-sharing compared with those without bike-sharing for a given trip using transit smart card data and bike-sharing GPS data from the city of Seoul. The results suggest that using bike-sharing in the intermodal trips where it performs better than buses could enhance the mobility performance by providing up to 34% savings in travel time per trip compared with the scenarios in which bus is used exclusively for the trips and up to 33% savings when bike-sharing trips are used exclusively. The results of the machine learning models suggest that the random forest classifier outperformed three other classifiers with an accuracy of 90% in predicting the performance of bike-sharing and intermodal transit trips. Further analysis and applications of the mobility performance of bike-sharing in Seoul are presented and discussed.

Funder

National Research Foundation of Korea

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3