Adding Multi-Day Attributes for Ridesharing Simulations via Data Fusion

Author:

Mendoza Iván1ORCID,Tampère Chris M. J.2ORCID

Affiliation:

1. Faculty of Science and Technology, Universidad del Azuay, Cuenca, Ecuador

2. KU Leuven, L-Mob, Leuven Mobility Research Centre, CIB, Leuven, Belgium

Abstract

Evaluating ridesharing potential is a trend in current research efforts because ridesharing provides additional mobility alternatives without extra putting vehicles on the road. Nevertheless, in most studied scenarios, the demand revealed by surveys and demographic information does not include multi-day characteristics of a trip such as frequencies on weekdays. Yet this is important for estimating the supply of rides, as the recurrence or regularity of a trip may affect the likelihood of a driver making the effort of registering the trip as being available for sharing. Likewise, if automated apps are used to recognize patterns in one’s trips and pro-actively offer them for sharing, the successful anticipation of such apps may again depend on the regularity of the trip. However, since multi-day data are complex to produce, in this paper, a data fusion procedure is proposed to generate an enriched synthetic demand for more realistic assessments. This can be achieved by combining standard single-day data sets with travel behavior patterns, which can be extracted from lifelogging data collected by most existing mobile apps. The resulting data sets after transferring information from the travel patterns to a recipient data set via statistical matching, will constrain matching trips by multi-day characteristics allowing complex scenarios. This approach enhances the evaluation of ridesharing and other shared-mobility systems and thus their ability to plan better strategies.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Digital technologies of transportation-related communication: Review and the state-of-the-art;Transportation Research Interdisciplinary Perspectives;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3