Learning to Recommend Signal Plans under Incidents with Real-Time Traffic Prediction

Author:

Yao Weiran1,Qian Sean12

Affiliation:

1. Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA

2. Heinz College of Information Systems and Public Policy, Carnegie Mellon University, Pittsburgh, PA

Abstract

The main question to address in this paper is to recommend optimal signal timing plans in real time under incidents by incorporating domain knowledge developed with the traffic signal timing plans tuned for possible incidents, and learning from historical data of both traffic and implemented signals timing. The effectiveness of traffic incident management is often limited by the late response time and excessive workload of traffic operators. This paper proposes a novel decision-making framework that learns from both data and domain knowledge to real-time recommend contingency signal plans that accommodate non-recurrent traffic, with the outputs from real-time traffic prediction at least 30 min in advance. Specifically, considering the rare occurrences of engagement of contingency signal plans for incidents, it is proposed to decompose the end-to-end recommendation task into two hierarchical models—real-time traffic prediction and plan association. The connections between the two models are learnt through metric learning, which reinforces partial-order preferences observed from historical signal engagement records. The effectiveness of this approach is demonstrated by testing this framework on the traffic network in Cranberry Township, Pennsylvania, U.S., in 2019. Results show that the recommendation system has a precision score of 96.75% and recall of 87.5% on the testing plan, and makes recommendations an average of 22.5 min lead time ahead of Waze alerts. The results suggest that this framework is capable of giving traffic operators a significant time window to access the conditions and respond appropriately.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real-time prediction of transit origin–destination flows during underground incidents;Transportation Research Part C: Emerging Technologies;2024-06

2. Statistical inference of travelers’ route choice preferences with system-level data;Transportation Research Part B: Methodological;2024-01

3. GA-Critic: A Traffic Signal Control Strategy Under Incident Conditions for Urban Networks;2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC);2023-09-24

4. Real-Time Prediction of Transit O-D Under Underground Incidents;2023

5. Traffic signals control system based on intelligent recommendation;2022 5th International Symposium on Informatics and its Applications (ISIA);2022-11-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3