Experimental and Numerical Investigation of Prefabricated Concrete Barrier Systems Using Ultra-High-Performance Concrete

Author:

Khodayari Abbas1ORCID,Mantawy Islam M.2ORCID,Azizinamini Atorod1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Florida International University, Miami, FL

2. Department of Civil and Environmental Engineering, Rowan University, Glassboro, NJ

Abstract

The functionality and crashworthiness of concrete barriers in bridge systems can be affected by the deterioration of the connection between bridge decks and concrete barriers. A set of details for barrier-to-deck connections for accelerated bridge construction (ABC) applications are proposed. Component-level testing was carried out on a conventional cast-in-place (CIP) detail and two versions of connections using ultra-high-performance concrete (UHPC). The use of UHPC allows for shorter development length and lap splice length for dowel bars and the material characteristics provide strength and durability to the connection. Two connection details were proposed: (1) UHPC connection within the barrier segment (U-shape connection) and (2) UHPC connection in a recess inside the bridge deck (recessed connection). Besides simplified details, the construction sequence of the proposed recessed connection is suitable for ABC applications. It is observed that the proposed U-shape connection detail is emulative of the equivalent CIP concrete barrier system. However, the recessed connection system can undergo significantly larger deflections at ultimate load compared with the CIP barrier system and exhibits a preferred mode of failure while the deck does not undergo significant damage. The results of the component testing were used to calibrate non-linear finite element models. Using validated models, numerical analyses were performed to investigate the structural performance of conventional 15 ft long barrier modules connected to the deck overhang using the recessed connection. The model was subjected to the end-loading configuration and it was found that the proposed barrier system meets the strength requirement for the corresponding test level.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference31 articles.

1. AASHTO LRFD Bridge Design Specifications. American Association of State Highway and Transportation Officials, Washington, D.C., 2017.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3