Accuracy Assessment of Satellite-Based Freeze-Thaw Retrievals on Low-Volume Roads in the United States

Author:

Kraatz Simon1,Miller Heather J.2,Jacobs Jennifer M.1,Dave Eshan V.1,Sias Jo1

Affiliation:

1. Department of Civil and Environmental Engineering, University of New Hampshire, Durham, NH

2. Department of Civil and Environmental Engineering, University of Massachusetts Dartmouth, North Dartmouth, MA

Abstract

Accurate identification of soil freeze or thaw (FT) is important for road management, because it greatly affects a road’s load bearing capacity. Despite low-volume roads (LVR) being more susceptible to damage because of FT transitions compared with high-volume roadways, relatively few LVRs are monitored via temperature data probes (TDP). Frequent and global spaceborne retrievals of soil FT states may be valuable to fill this observational gap. NASA’s Soil Moisture Active Passive (SMAP) instrument provides FT retrievals up to twice a day, approximately corresponding to the top 0–10 cm of soils. This study compares SMAP FT data to TDP data at LVRs located in the contiguous United States (CONUS) and Alaska using hourly data obtained from the Meteorological Assimilation Data Ingest System for the 2016, 2017, and 2018 winters. Overall, SMAP FT retrievals show promise in distinguishing between cold and warm roads. For all cases, the median road temperatures corresponding to SMAP frozen and thawed retrievals were clearly below or above 0°C, respectively. SMAP 6:00 p.m. observations perform better than the 6:00 a.m. observations with overall accuracies of 76% in CONUS and 81% Alaska. However, SMAP’s accuracy for frozen conditions is below 50% in CONUS indicating that SMAP has a warm bias compared with the TDP sites. These preliminary results suggest that the SMAP FT states have potential value for road management.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3