Minimum Sampling Size of Floating Cars for Urban Link Travel Time Distribution Estimation

Author:

Yun Meiping1,Qin Wenwen12

Affiliation:

1. Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai, China

2. Faculty of Transportation Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China

Abstract

Despite the wide application of floating car data (FCD) in urban link travel time estimation, limited efforts have been made to determine the minimum sample size of floating cars appropriate to the requirements for travel time distribution (TTD) estimation. This study develops a framework for seeking the required minimum number of travel time observations generated from FCD for urban link TTD estimation. The basic idea is to test how, with a decreasing the number of observations, the similarities between the distribution of estimated travel time from observations and those from the ground-truth vary. These are measured by employing the Hellinger Distance (HD) and Kolmogorov-Smirnov (KS) tests. Finally, the minimum sample size is determined by the HD value, ensuring that corresponding distribution passes the KS test. The proposed method is validated with the sources of FCD and Radio Frequency Identification Data (RFID) collected from an urban arterial in Nanjing, China. The results indicate that: (1) the average travel times derived from FCD give good estimation accuracy for real-time application; (2) the minimum required sample size range changes with the extent of time-varying fluctuations in traffic flows; (3) the minimum sample size determination is sensitive to whether observations are aggregated near each peak in the multistate distribution; (4) sparse and incomplete observations from FCD in most time periods cannot be used to achieve the minimum sample size. Moreover, this would produce a significant deviation from the ground-truth distributions. Finally, FCD is strongly recommended for better TTD estimation incorporating both historical trends and real-time observations.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3