Non-Destructive Detection of Asphalt Concrete Stripping Damage using Ground Penetrating Radar

Author:

Ma Ye1,Elseifi Mostafa A.1,Dhakal Nirmal1,Bashar Mohammad Z.1,Zhang Zhongjie2

Affiliation:

1. Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA

2. Louisiana Transportation Research Center, Louisiana State University, Baton Rouge, LA

Abstract

Ground penetrating radar (GPR) is a non-destructive evaluation technique, which has been applied to assess as-built pavement conditions and to evaluate damage and deterioration that develop over time. The objective of this study was to develop a methodology that uses GPR to detect moisture-related stripping damage in asphalt pavements. To achieve this objective, A Finite-Difference Time-Domain based simulation program was used to study the propagation of GPR signals in a stripped pavement. Field test data including GPR scans and visual inspection of cores of 202 pavement sections were used to study the relationship between GPR traces and asphalt concrete (AC) stripping damage. Based on this analysis, a novel GPR-based indicator, known as the accumulating in-layer peaks (AIP), was introduced to detect stripping damage in asphalt pavements. Field data and pavement cores were used to validate the proposed indicator and to evaluate its effectiveness in detecting the presence, extent, and severity of stripping in in-service pavement sections. Based on the results of the study, it was found that the presence of a void in the middle of the AC layer resulted in positive peaks in the reflected waves as indicated by the simulation of GPR signals. In addition, detected intermediate wave peaks between the surface and the interface between the AC and base layers on the GPR traces were associated with stripping damage in the AC layer. The AIP predicted accuracies for stripped and non-stripped sections were 80% and 96%, respectively, indicating its effectiveness in detecting stripping damage in flexible pavements.

Funder

louisiana transportation research center

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3