Developing New Empirical Formulae for the Resilient Modulus of Fine-Grained Subgrade Soils Using a Large Long-Term Pavement Performance Dataset and Artificial Neural Network Approach

Author:

Fedakar Halil Ibrahim1

Affiliation:

1. Department of Civil Engineering, Abdullah Gul University, Kayseri, Turkey

Abstract

Artificial neural network (ANN) has been successfully used for developing prediction models for resilient modulus (Mr). However, no reliable Mr formula derived from these models has been proposed in previous studies, although engineers/researchers need empirical formulae for hand calculation of Mr. Therefore, this study aimed to propose reliable empirical formulae for the Mr of fine-grained soils using ANN. For this purpose, thousands of ANN models were developed using the long-term pavement performance (LTPP) and external datasets. The input parameters were the percentage of soil particles passing through #200 sieve (P200), silt percentage (SP), clay percentage (CP), liquid limit (LL), plasticity index (PI), maximum dry density ([ρdry]max), optimum moisture content (wopt), confining pressure (σc), and nominal maximum axial stress (σz). The ANN models were compared with several constitutive models. The results indicate that the constitutive models failed to predict the Mr, and the best Mr predictions were obtained by the ANN-C9 (P200, SP, CP, LL, PI, σc, and σz), ANN-C10 (P200, SP, CP, [ρdry]max, wopt, σc, and σz), and ANN-C11 (P200, SP, CP, LL, PI, [ρdry]max, wopt, σc, and σz) models. Thus, the structures of these ANN models were formulated and proposed as the new empirical formulae for the Mr of fine-grained soils. Sensitivity analysis was also performed on these ANN models. It was determined that (ρdry)max is the most influential parameter in the ANN-C10 model, and LL is the most influential parameter in the ANN-C9 and ANN-C11 models. On the other hand, σc and σz are the least influential parameters.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3