Assessment of Axial Resistance of Piles Considering Consolidation Setup and Aging Setup Using Direct Pile Cone Penetration Test Methods

Author:

Khasib Isam A.1,Abu-Farsakh Murad Y.2ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA

2. Louisiana Transportation Research Center, Louisiana State University, Baton Rouge, LA

Abstract

This paper focuses on evaluating the increase in axial pile resistance subjected to both consolidation and aging setups. Consolidation and aging setup models were first developed to estimate the setup parameters based on databases collected from literature, which include 10 instrumented piles for consolidation setup and 26 test piles for long-term aging. The eight top-performing pile cone penetration test (CPT) methods that were evaluated in a previous study were used to estimate the side resistance of soil layers at 14 days after pile driving. The developed consolidation and aging setup models were then used to extrapolate the results to evaluate the side resistance of each soil layer at the end of consolidation and for long-term aging. The estimated side and total resistances were compared with the measurements from pile load tests considering both consolidation and aging setups. The resistances estimated before and after completion of excess pore water pressure dissipation indicates that significant aging takes place after consolidation setup. The value of consolidation setup parameter ( Ac) was 0.53, and, for aging, the setup parameter ( Ag) was 0.23 in clay and 0.16 in sand. The results show that all pile CPT methods with/without using a consolidation setup model tend to underestimate the unit side resistance of clay soil layers. The use of pile CPT methods in combination with an aging model improved the accuracy of pile CPT methods, and this was verified using load test results for five piles subjected to aging. The Philipponnat and University of Florida (UF) methods showed the best performance on estimating the total resistance of piles subjected to aging.

Publisher

SAGE Publications

Reference70 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3