CTFNet: Coarse-to-Fine Segmented Lane Line Detection in Complex Road Conditions

Author:

Fan Chao1ORCID,Wang Xiao2,Chen Zhixiang2,Peng Bincheng1ORCID

Affiliation:

1. School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou City, Henan Province, China

2. School of Information Science and Engineering, Henan University of Technology, Zhengzhou City, Henan Province, China

Abstract

To maintain robustness in complex and uncontrollable real-world driving scenarios, this paper proposes a new segmentation-based coarse-to-fine lane line model (CTFNet). Which embeds dual-pathway attention (DPA) in the coarse segmentation encoder-decoder architecture to fuse high and low-level features with dual inputs, taking the strengths and complementing the weaknesses, and at the same time being able to capture more spatial detail information. However, the extracted lane line cues are limited in extreme conditions. As a result, a feature localization module (FLM) is proposed which extracts the global contextual information of the occluded region along the vertical and horizontal axes and determines lane line location by predicting the confidence of the lane lines based on the extracted information. Additionally, some regions of the initial feature map of the coarse segmentation network are difficult to distinguish between classes, the uncertain region refinement module (URRM) is designed in the fine stage to gradually refine the uncertain pixels using the relationship between adjacent features. Finally, the model is extensively tested on the tvtLANE data set, and the results show that CTFNet outperforms most state-of-the-art methods with an F1-measure of 91.48%, which not only reduces false detection but also maintains good robustness in extremely difficult scenarios.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3