Detecting Anomalies in National Bridge Inventory Databases Using Machine Learning Methods

Author:

Fereshtehnejad Ehsan1ORCID,Gazzola Gianluca1ORCID,Parekh Pratik1,Nakrani Chirag1ORCID,Parvardeh Hooman1ORCID

Affiliation:

1. Bridge Intelligence, LLC., North Brunswick, NJ

Abstract

National Bridge Inventory (NBI) data is regularly collected for 617,000+ national bridges in the U.S. These data, which consist of 100+ fields related to bridges and culverts, have been shown to contain errors. These errors could reduce the effectiveness of the decisions made based on this data, and cause safety issues. For this reason, an anomaly detection platform is developed to identify data anomalies in NBI datasets more effectively than existing rule-based error-check tools can. First, the user provides groups of correlated NBI fields as input to the platform. Then, for each group, it utilizes two tools to detect anomalous data and determine errors. The first tool uses three machine learning algorithms to identify anomalous data points and categorizes them based on their degree of anomaly. The second tool visualizes the distributions of the NBI fields in the group with histograms, scatter plots, and so forth. These plots are used to analyze the data points that are identified from the first tool as anomalies. The results of these two tools, together with expert knowledge about the data fields, are then used to distinguish data errors from outliers. The proposed platform is applied to a state’s NBI dataset that was submitted to the Federal Highway Administration (FHWA) in 2020. For this dataset, two groups of correlated fields are considered. The results showed the platform could effectively pinpoint anomalous values of NBI fields that individually, or in conjunction with other fields, do not follow the patterns that characterize most of the data, prompting the identification of potential inconsistencies and errors.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference23 articles.

1. American Society of Civil Engineers. 2021 Report Card for America’s Infrastructure, Bridges. 2021. https://infrastructurereportcard.org/wp-content/uploads/2020/12/Bridges-2021.pdf.

2. Automatic Logical Inconsistency Detection in the National Bridge Inventory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3