Enhancing Performance and Reducing Environmental Impact of Concrete with Replacement of Recycled Concrete Aggregate Treated with Various CO2 Pressures

Author:

Ismail Fouad Ismail1ORCID,Mamirov Miras2,Kim Seunghee1ORCID,Hu Jiong1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Omaha, NE

2. Engineering Operations, LLC, Littleton, CO

Abstract

Recent studies have demonstrated that the carbonation treatment of recycled concrete aggregate (RCA) could enhance its properties by the conversion of adhesive paste to stronger and denser products. In addition, the use of RCA and the sequestration of CO2 during the CO2-treatment process can help to reduce the carbon footprint of concrete. This study assesses the performance of recycled aggregate concrete (RAC) developed from CO2-treated RCA. RCAs obtained from over 20 old highway and airfield pavements were treated under different pressures (5, 10, 20, 40, and 60 pounds per square inch [psi]) of CO2. The physical and mechanical properties of RCA were then examined. The complete substitution of natural coarse aggregate was carried out using both untreated and treated RCA, followed by an assessment of the resulting RAC’s fresh, mechanical, and durability properties. Furthermore, the environmental performance of concrete incorporating untreated and treated RCA was evaluated. The experimental findings revealed that the CO2 treatment pressure had a significant influence on RCA characteristics, leading to notable improvements in the mechanical and durability properties of RAC. Results demonstrated that by employing CO2 treatment at pressures of 20, 40, and 60 psi, concrete incorporating complete RCA replacement can achieve properties comparable to concrete with natural aggregate. Moreover, the RAC produced using CO2-treated RCA demonstrated a reduced CO2 equivalent when compared with concrete incorporating natural aggregate or untreated RCA. These findings underscore the potential of CO2-treated RCA as a viable and environmentally friendly alternative to natural aggregate for sustainable concrete production.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3