Impact of Phase Sequence on Cycle Length Resonance

Author:

Day Christopher M.1,Emtenan A. M. Tahsin1

Affiliation:

1. Iowa State University, Ames, IA

Abstract

The concept of resonant cycle length, that there are certain cycle lengths that may provide excellent progression owing to corridor geometry and other factors, has some currency as a potential strategy for cycle length selection. Past studies have identified resonant cycles under certain conditions and demonstrated benefits from use of the strategy as a means of selecting cycle length. The present study revisited the concept in application to flow-based models of traffic signal performance, highlighting the impact of phase sequence optimization. The phenomenon of cycle length resonance was explored for corridors with equal and randomly generated spacing between intersections, and finally for a field-calibrated corridor. Under each scenario, the performance of different cycle lengths was explored under two optimization strategies: optimization of only offsets, and optimization of both offsets and phase sequence. It was found that phase sequence has a substantial impact on the performance of coordination. Optimized phase sequences were found to yield 8% to 14% improvement in performance compared with use of the default sequence. For corridors where a resonant cycle length was evident, when phase sequences could also be adjusted, the poorer performance of non-resonant cycle lengths could be mitigated by optimizing phase sequence. Although use of a resonant cycle length is likely to yield good performance for some corridors under appropriate conditions, the use of a phase sequence optimization strategy is likely to have a strong impact on most corridors, and could be more impactful than selection of a resonant cycle length.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference19 articles.

1. Webster F. V., Cobbe B. M. Traffic Signals. Road Research Technical Paper No. 56, Road Research Laboratory, HMSO, London, 1966.

2. Cycle time optimization in traffic signal coordination

3. Traffic Control

4. Signal Timing Manual - Second Edition

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3